Análisis de elementos mayores en rocas sedimentarias de la sección La Joya del Misisípico Medio-Pensilvánico Medio en Sierra Agua Verde, Sonora, México

Contenido principal del artículo

Rafael Villanueva-Olea
Francisco Sánchez-Beristain
Juan José Palafox-Reyes
Blanca Estela Buitrón-Sánchez

Resumen

La Sierra Agua Verde es un importante sitio paleontológico en el noroeste de México. Si bien se han realizado numerosos estudios estratigráficos y paleontológicos en esta área, la falta de investigación geoquímica ha dificultado una comprensión completa de su contexto paleoambiental. Nuestro estudio se centró principalmente en examinar la piedra caliza fosilífera del período del Medio Mississippi al Medio Pensilvania en la región. Utilizando fluorescencia de rayos X (XRF), medimos las concentraciones de óxidos de elementos principales en muestras de piedra caliza de roca a granel. Este análisis nos ayudó a inferir las condiciones paleoambientales a través de proporciones elementales y coeficientes de correlación. Las muestras presentan un enriquecimiento de calcio, y algunas también exhibieron altas proporciones de magnesio/calcio (Mg/Ca). La relación silicio/aluminio (Si/Al), similar a Si/Ca, se interpretó como indicativa de productividad, potencialmente atribuida a la presencia de esponjas silíceas. Sin embargo, los elevados valores de silicio también podrían deberse a procesos de meteorización continental. Los picos en los valores elementales distintos del calcio pueden indicar episodios de afluencia fluvial hacia la plataforma carbonatada donde se asentaron estos sedimentos. Relacionamos la curva de elementos principales con estudios previos de isótopos estables para determinar si la entrada de elementos detríticos se alineaba con las condiciones climáticas globales o regionales. Nuestras hipótesis fueron corroboradas mediante análisis estadístico, arrojando dendrogramas que resaltaron asociaciones entre elementos como Al y K, así como Fe y Ti (Índice de Morisita). Esto podría sugerir la precipitación de minerales como ortoclasa/illita e ilmenita. Además, la creciente divergencia entre Mg y Mn en comparación con el clado Al-K, junto con el Si, podría explicar la fuerte conexión Fe-Ti, reflejando la tendencia de Mn y Ti a formar óxidos. La coprecipitación de Si y P también podría estar relacionada con episodios de productividad. Sin embargo, el contenido de Si podría indicar entrada de cuarzo o una contribución de sílice biogénica.

Detalles del artículo

Cómo citar
Villanueva-Olea, R., Sánchez-Beristain, F., Palafox-Reyes, J. J., & Buitrón-Sánchez, B. E. (2025). Análisis de elementos mayores en rocas sedimentarias de la sección La Joya del Misisípico Medio-Pensilvánico Medio en Sierra Agua Verde, Sonora, México. Paleontología Mexicana, 14(1), 29–44. https://doi.org/10.22201/igl.05437652e.2025.14.1.391
Sección
Geoquímica

Citas

Anthony, J. W., Bideaux, R. A., Bladh, K. W., & Nichols, M. C. (Eds.). (2005). Ilmenite. In Handbook of Mineralogy, Mineralogical Society of America. Retrieved May 3, 2023, from https://www.handbookofmineralogy.org/pdfs/ilmenite.pdf

Buitrón-Sánchez, B. E., Gómez-Espinosa, C., Almazán-Vázquez, E. & Vachard, D. (2007). A late Atokan regional encrinite (early late Moscovian, Middle Pennsylvanian) in the Sierra Agua Verde, Sonora state, NW Mexico. In J. J. Álvaro, M. Aretz, A. Munnecke, D. Vachard & E. Vennin (Eds.), Palaeozoic Reefs and Bioaccumulations: Climatic and Evolutionary Controls (vol. 275, pp. 201–209), Geological Society of London Special Publications.

Buitrón-Sánchez, B. E., Chacón-Wences, O., Vachard, D., Palafox-Reyes, J. J., Jiménez-López, J. C., & Sour-Tovar, F. (2015). Pennsylvanian biota of the Sierra Agua Verde, Sonora, México: biostratigraphic and paleogeographic considerations. Revista Mexicana de Biodiversidad, 86, 521–527. https://doi.org/10.1016/j.rmb.2015.04.006

Caputo, M. V., Melo, J. H. G., Streel, M., & Isbell, J. L. (2008). Late Devonian and Early Carboniferous glacial records of South America. In C. R. Fielding, T. D. Frank, & J. L. Isbell (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space (Geological Society of America Special Papers, 441, pp. 161–173), The Geological Society of America. https://doi.org/10.1130/2008.2441(11)

Carter, S. C., Paytan, A., & Griffith, E. M. (2020). Toward an improved understanding of the marine barium cycle and the application of marine barite as a paleoproductivity proxy. Minerals, 10(5), 421. https://doi.org/10.3390/min10050421

Conley, D. J. & Malone, T. C. (1992). Annual cycle of dissolved silicate in Chesapeake Bay: implications for the production and fate of phytoplankton biomass. Marine Ecology Progress Series, 81, 121–128. DOI: 10.3354/meps081121

Craigie, N. (2018). Principles of elemental chemostratigraphy. A practical user guide. Springer. https://doi.org/10.1007/978-3-319-71216-1

Creamean, J. M., Spackman, J. R., Davis, S. M., & White, A. B. (2014). Climatology of long-range transported Asian dust along the west coast of the United States. Journal of Geophysical Research: Atmospheres, 119(12), 171–185. https://doi.org/10.1002/2014JD021694

Crowell, J. C. (1999). Pre-Mesozoic ice ages: their bearing on understanding the climate system. Geological Society of America. https://doi.org/10.1130/MEM192

Fielding, C. R., Frank, T. D., & Isbell, J. L. (2008). The late Paleozoic ice age—A review of current understanding and synthesis of global climate patterns. In C. R. Fielding, T. D. Frank, & J. J. Isbell (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space (Geological Society of America Special Papers, 441, pp. 343–354), The Geological Society of America. https://doi.org/10.1130/2008.2441(24)

Flügel, E. (2010). Microfacies of carbonate rocks. Analysis, interpretation, and application. Springer.

Frank, T. D., Birgenheier, L. P., Montañez, I. P., & Fielding, C. R. (2008), Late Paleozoic climate dynamics revealed by comparison of ice-proximal stratigraphic and ice-distal isotopic records. In C. R. Fielding, T. D. Frank, & J. L. Isbell (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space (Geological Society of America Special Papers, 441, pp. 1–12), The Geological Society of America. https://doi.org/10.1130/2008.2441(23)

Gómez-Espinosa, C., Vachard, D., Buitrón-Sánchez, B. E., Almazán-Vázquez, E. & Mendoza-Madera, C. (2008). Pennsylvanian fusulinids and calcareous algae from Sonora (northwestern Mexico), and their biostratigraphic and palaeobiogeographic implications. Comptes Rendus Palevol, 7, 259–268. https://doi.org/10.1016/j.crpv.2008.04.001

Hakimi, M. H., Mohialdeen, I. M. J., Abdullah, W. H., Wimbledon, W., Makeen, Y. M. & Mustapha, K. A. (2015). Biomarkers and inorganic geochemical elements of Late Jurassic–Early Cretaceous limestone sediments from Banik Village in the Kurdistan Region, Northern Iraq: implications for origin of organic matter and depositional environment conditions. Arabian Journal of Geosciences, 8(11), 9407–9421. https://doi.org/10.1007/s12517-015-1863-y

Haq, B. U. & Schutter, S. R. (2008). A chronology of Paleozoic sea-level changes. Science, 322(5898), 64–68. https://doi.org/10.1126/science.1161648

Herron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58(5), 820–829. https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D

Holz, M., Souza, P. A & Iannuzzi, R. (2008). Sequence stratigraphy and biostratigraphy of the Late Carboniferous to Early Permian glacial succession (Itararé subgroup) at the eastern-southeastern margin of the Paraná Basin, Brazil. In C. R. Fielding, T. D. Frank, & J. J. Isbell (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space (Geological Society of America Special Papers, 441, pp. 115–129), The Geological Society of America. https://doi.org/10.1130/2008.2441(08)

Hönisch, B., Allen, K. A., Lea, D. W., Spero, H.J ., Eggins, S. M., Arbuszweski, J., De Menocal, P., Rosenthal, Y., Russell, A. D. & Elderfield, H. (2013). The influence of salinity on Mg/Ca in planktic foraminifers – Evidence from cultures, core-top sediments and complementary δ18O. Geochimica et Cosmochimica Acta, 121(15), 196–213. https://doi.org/10.1016/j.gca.2013.07.028

Hu, J., Li, Q., Song, C., Wang, S. & Shen, B. (2017). Geochemical characteristics of the Permian sedimentary rocks from Qiangtang Basin: Constraints for paleoenvironment and paleoclimate. Terrestrial, Atmospheric and Oceanic Sciences, 28(3), 271–282. https://doi.org/10.3319/TAO.2016.08.08.01

Isbell, J. L., Miller, M. F., Wolfe, K. L., & Lenaker, P. A. (2003). Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of northern hemisphere cyclothems?. In M. A. CHAN & A. W. Archer (Eds.), Extreme depositional environments: mega end members in geologic time, (Geological Society of America Special Papers, 370, pp. 5–24), The Geological Society of America. https://doi.org/10.1130/0-8137-2370-1.5

Johansson, E., Wold, S. & Sjödin, K. (1984). Minimizing effects of closure on analytical data. Analytica Chimica Acta, 161, 9–27. https://doi.org/10.1016/S0003-2670(00)83131-1

Kraft, S., Frank, M., Hathorne, E. C., & Weldeab, S. (2013). Assessment of seawater Nd isotope signatures extracted from foraminiferal shells and authigenic phases of Gulf of Guinea sediments. Geochimica et Cosmochimica Acta, 121, 414–435. https://doi.org/10.1016/j.gca.2013.07.029

Kristiansen, S., & Hoell, E. E. (2002). The importance of silicon for marine production. Hydrobiologia, 484, 21–31. https://doi.org/10.1023/A:1021392618824

Kulacki, K. J., & Cardinale, B. J. (2012). Effects of nano-titanium dioxide on freshwater algal population dynamics. PLoS ONE, 7(10), e47130. https://doi.org/10.1371/journal.pone.0047130

Liguori, B. T. P., De Almeida, M. G., & De Rezende, C. E. (2016). Barium and its importance as an indicator of (paleo) productivity. Anais da Academia Brasileira de Ciências, 88(4), 2093-2103. https://doi.org/10.1590/0001-3765201620140592

Lozano, R., & Bernal, J. P. (2005). Characterization of a new set of eight geochemical reference materials for XRF major and trace element analysis. Revista Mexicana de Ciencias Geológicas, 22(3), 329–344.

Lozano-Santa Cruz, R., Verma, S. P., Girón, P., Velasco, F., Morán-Zenteno, D., Viera, F., & Chávez, G. (1995). Calibración preliminar de fluorescencia de rayos X para análisis cuantitativo de elementos mayores en rocas ígneas. Actas INAGEQ, 1, 203–208.

Mii, H., Grossman, E. L., & Yancey, T. E. (1999). Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation. Geological Society America Bulletin, 111(7), 960–973. https://doi.org/10.1130/0016-7606(1999)111%3C0960:CISONA%3E2.3.CO;2

Mii, H., Grosmann, E. L., Yancey, T. E., Chuvashov, B., & Egorov, A. (2001). Isotopic records of brachiopod shells from the Russian Platform—evidence for the onset of mid-Carboniferous glaciation. Chemical Geology, 175(1–2), 133–147. https://doi.org/10.1016/S0009-2541(00)00366-1

Minjárez-Sosa, I., Ochoa-Granillo, J. A., & Sosa-León, P. (1993). Geología de la Sierra Agua Verde, NE de Villa Pesqueira (Matape) (abstract). In C. González-León. & E. L. Vega-Granillo (Eds.), Tercer Simposio de la Geología de Sonora y Áreas Adyacentes, Hermosillo, Sonora, México, 83–85.

Morisita, M. (1959). Measuring of interspecific association and similarity between communities. Memoirs of the Faculty of Science Kyushu University, Series E, 3(1), 65–80.

Navas-Parejo, P., Palafox, J. J., Villanueva, R., Buitrón-Sánchez, B. E., & Valencia-Moreno, M. (2017). Mid-Carboniferous shallow-water conodonts from northwest Mexico. Micropaleontology, 63(6), 383–402.

Ochoa-Granillo, J. A., & Sosa-León, J. P. (1993). Geología y estratigrafía de la Sierra Agua Verde con énfasis en el Paleozoico (Bachelor dissertation, Universidad de Sonora). Hermosillo, Sonora, México.

Palafox-Reyes, J. J. (2011). Du Craton au Rheïque: Le nord et le centre de l’état du Sonora (Mexique) au Paleozoïque supérieur (Devonien–Pennsylvanien), lithostratigraphie, biostratigraphie, approche géochimique et implications géologiques (PhD dissertation, Université de Lille 1).

Pearson, K. (1895). Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58(1), 240–242. https://doi.org/10.1098/rspl.1895.0041

Pingitore, N. E. Jr., & Engle, M. A. (2022). Compositional closure—its origin lies not in mathematics but rather in nature itself. Minerals, 12(1), 74. https://doi.org/10.3390/min12010074

Poole, F. G., Stewart, L. H., Repetski, J. E., Harris, A. G., Ross, R. J. Jr., Ketner, K. B., Amaya-Martínez, R., & Morales-Ramírez, J. M. (1995). Ordovician carbonate-shelf rocks of Sonora, Mexico. In J. D. Cooper, M. L. Droser & S. C. Finney (Eds.), Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System, (Pacific Section, 77, pp. 267–275), Society of Economic Paleontologists and Mineralogists.

Poole, F. G., Perry, W. J. Jr., Madrid, R. J., & Amaya-Martínez, R. (2005). Tectonic synthesis of the Ouachita-Marathon-Sonora orogenic margin of southern Laurentia: Stratigraphic and structural implications for timing of deformational events and plate-tectonic model. In T. H. Anderson, J. A. Nourse, J. W. McKee, & M. B. Steiner (Eds.), The Mojave-Sonora megashear hypothesis: Development, assessment, and alternatives, (Geological Society of America Special Papers, 393, pp. 543–596), The Geological Society of America. https://doi.org/10.1130/0-8137-2393-0.543

Pye, K. (1986). Mineralogical and textural controls on the weathering of granitoid rocks. Catena, 13(1–2), 47-57. https://doi.org/10.1016/S0341-8162(86)80004-2

Reitner, J. (1992). Coralline spongien: Der Versuch einer phylogenetisch-taxonomischen Analyse. Berliner Geowissenschaftliche Abhandlungen Reihe E, 1, 1–352. Berlin.

Repetski, J. E., Harris, A. G., Stewart, J. H., Poole, F. G., & Morales-Ramírez, J. M. (1985). Early Ordovician conodonts from central Sonora, Mexico (abstract). In Fourth European Conodont Symposium (Ecos IV), Nothingham, U.K., 25–26.

Ross, D. J. K., & Bustin, R. M. (2009). Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian–Mississippian shales, Western Canadian Sedimentary Basin. Chemical Geology, 260(1-2), 1–19. https://doi.org/10.1016/j.chemgeo.2008.10.027

Sánchez-Beristain, F., García-Barrera, P., & Calvillo-Canadell, L. (2016). Mares calcíticos y aragoníticos: efectos en formadores de arrecifes a través del tiempo. TIP Revista Especializada en Ciencias Químico-Biológicas, 19(1), 45–53. https://doi.org/10.1016/j.recqb.2016.02.005

Sokal, R. R., & Michener, C. D. (1958). A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, 38, 1409–1438.

Stewart, J. H., McMenamin, M. A. S., & Morales-Ramírez, J. M. (1984). Upper Proterozoic and Cambrian rocks in the Caborca region, Sonora, Mexico; physical stratigraphy, biostratigraphy, paleocurrent studies, and regional relations. U.S. Geological Survey Professional Papers, 1309, 1–36. https://doi.org/10.3133/pp1309

Stewart, J. H., Madrid, R. J., Poole, F. G., & Ketner, K. B. (1988). Studies of Late Proterozoic, Paleozoic, and Triassic rocks in Sonora, Mexico (abstract). In Segundo Simposio sobre Geología y Minería de Sonora, Hermosillo, Sonora, México, Eds. E. Almazán-Vázquez & M. A. Fernández-Aguirre, pp. 60–62.

Stewart, J. H., Poole, F. G., Harris, A. G., Repetski, J. E., Wardlaw, B. R., Mamet, B. L. & Morales-Ramírez, J. M. (1999). Neoproterozoic(?) to Pennsylvanian inner-shelf, miogeoclinal strata in Sierra Agua Verde, Sonora, Mexico. Revista Mexicana de Ciencias Geológicas, 16, 35–62.

Tallberg, P., Tréguer, P., Beucher, C. & Corvaisier, R. (2008). Potentially mobile pools of phosphorus and silicon in sediment from the Bay of Brest: Interactions and implications for phosphorus dynamics. Estuarine, Coastal and Shelf Science, 76(1), 85–94. https://doi.org/10.1016/j.ecss.2007.06.003

Török, Á., Licha, T., Simon, K. E. A., & Siegesmund, S. (2010). Urban and rural limestone weathering; the contribution of dust to black crust formation. Environmental Earth Sciences, 63(4), 675–693. https://doi.org/10.1007/s12665-010-0737-6

Tucker, M. E. & Wright, V. P. (1990). Carbonate Sedimentology. Blackwell, Oxford. http://dx.doi.org/10.1002/9781444314175

Veevers, J. J. & Powell, C. M. (1987). Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica. Geological Society of America Bulletin, 98, 475–487.

Villanueva-Olea, R., Barragán, R., Palafox-Reyes, J. J., Jiménez-López, J. C. & Buitrón-Sánchez, B. E. (2019). Microfacies and stable isotope analyses from the Carboniferous of the La Joya section in Sierra Agua Verde, Sonora, Mexico. Boletín de la Sociedad Geológica Mexicana, 71(3), 585–607. http://dx.doi.org/10.18268/BSGM2019v71n3a1

Warren, J. (2000). Dolomite: occurrence, evolution and economically important associations. Earth-Science Reviews, 52(1-3), 1–81. https://doi.org/10.1016/S0012-8252(00)00022-2

White, W. M. (2013). Geochemistry. Wiley-Blackwell.

Wicander, R. & Monroe, J. S. (2010). Historical geology: evolution of Earth and life through time. Brooks/Cole Cengage Learning.

Xianzheng, Z., Xiugang, P., Wemya, J., Lihong, Z., Fengming, J., Dunqing, X., Lixin, F. & Hongjun, L. (2019). An exploration breakthrough in Paleozoic petroleum system of Huanghua Depression in Dagang Oilfield and its significance, North China. Petroleum Exploration and Development, 46(4), 651–663. https://doi.org/10.1016/S1876-3804(19)60224-7

Yuan, Y., Chen, J., Liang, J., Xu, M., Lei, B., Zhang, Y., Cheng, Q. & Wang, J. (2019). Hydrocarbon geological conditions and exploration potential of Mesozoic–Paleozoic marine strata in the South Yellow Sea Basin. Journal of Ocean University of China, 18, 1329–1343. https://doi.org/10.1007/s11802-019-3853-2